Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization.

نویسندگان

  • Karen Stanger
  • Micah Steffek
  • Lijuan Zhou
  • Christine D Pozniak
  • Clifford Quan
  • Yvonne Franke
  • Jeff Tom
  • Christine Tam
  • Irina Krylova
  • J Michael Elliott
  • Joseph W Lewcock
  • Yingnan Zhang
  • Jeremy Murray
  • Rami N Hannoush
چکیده

The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modifying Caspase-3 Activity by Altering Allosteric Networks

Caspases have several allosteric sites that bind small molecules or peptides. Allosteric regulators are known to affect caspase enzyme activity, in general, by facilitating large conformational changes that convert the active enzyme to a zymogen-like form in which the substrate-binding pocket is disordered. Mutations in presumed allosteric networks also decrease activity, although large structu...

متن کامل

Dissecting an allosteric switch in caspase-7 using chemical and mutational probes.

Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compound...

متن کامل

Discovery of an allosteric site in the caspases.

Allosteric regulation of proteins by conformational change is a primary means of biological control. Traditionally it has been difficult to identify and characterize novel allosteric sites and ligands that freeze these conformational states. We present a site-directed approach using Tethering for trapping inhibitory small molecules at sites away from the active site by reversible disulfide bond...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

Cytotoxic and Anticancer Effects of ICD-85 (Venom Derived Peptides) in Human Breast Adenocarcinoma and Normal Human Dermal Fibroblasts

      ICD-85 (venom derived peptides) has anti-proliferative effect and anti-angiogenesis activity on cancer cells. This study was performed to test the effect of ICD-85, on Human breast adenocarcinoma (MCF-7) and normal Human Dermal Fibroblasts (HDF) cell lines. In this experimental study, Mitochondrial activity, Neutral red uptake, Lactate dehydrogenase (cell necrosis), and cell morphology we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemical biology

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2012